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Executive Summary 
 

The OSU-ACT is an autonomous vehicle developed by a team of faculty, staff and 
students at OSU, with support from individuals and groups from Italy and Turkey. It 
utilizes technologies and experience gained through participation in the first two Grand 
Challenges and over a decade of autonomous vehicle research, development and testing. 
 
The Hybrid SUV selected provided a simplified path for drive-by-wire attainment and 
enough electrical power for the computers and sensing devices.  
 
Sensors were chosen based on our Grand Challenge experience, evaluation of urban 
driving needs and budgetary constraints. Primary surround sensing relies on lidars, with 
vision and radars playing a secondary role.  
 
The autonomous drive through the urban area is based on evaluation of the mission over 
a map database. As each checkpoint is reached, the next sequence of anticipated 
situations are pre-planned. These situations are the “meta-states” of a hierarchical state-
machine, where the sub-states rely on sensing and analysis of the environment. 
 
The five distinct portions of “intelligence” are distinct software modules. They are: 

• Plan Generation 
• High Level Control 
• Low Level Control 
• Sensor Fusion 
• Situation Analysis 

Tests and selection decisions were undertaken through the development and a 
sophisticated simulation environment was created and used for verifying all aspects of 
“intelligence” and software implementation. 
 
1. Introduction and Overview 
 
The Ohio State University Autonomous City Transport (OSU-ACT) is the 7th generation 
autonomous vehicle produced in 12 years by a core group of researchers at OSU. OSU-
ACT was developed by a large team, and many of its sub-systems, hardware selections 
and the algorithms coded rely on our experience, especially in the first two DARPA 
Grand Challenges. There are only a limited number of areas where legacy software and 
some older hardware was used. But a number of our decisions, selections and tests have 
relied on our previous experience. 
 
In this report we outline the hardware, the over-all intelligent structure for solving the 
autonomous urban driving problem, and the algorithms developed and used. We also 
outline tests used, criteria for comparisons and the development process. 
 
Figure 1 shows the logic structure of ACT. The five distinct portions of “intelligence” 
will be explained in the sequel and tests and design choices will also be outlined. 
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2. Hardware 
 
2.1. Vehicle Drive By Wire 
For the 2007 DARPA Urban Challenge, a new 2006 Toyota Highlander Hybrid SUV was 
selected for automation.  The interior space available in the vehicle provides significant 
flexibility for the mounting of processing, power, and control hardware, at the cost of 
only two additional feet of curb-to-curb turning circle diameter and 4 inches of additional 
width relative to an ordinary passenger sedan.  The exterior has convenient hard points 
for mounting sensors or attaching mounting brackets. The hybrid vehicle provides a 
number of advantages for automated vehicle purposes.  DC power for computers, 
electronics, and sensors can be derived directly from the vehicle's 280 volt battery pack 
using DC-DC converters and DC-AC inverters, and a drain of 1800-2500 watts will be 
insignificant compared to the 45KW maximum output of the battery pack. 
 
The task of actuation is also significantly simplified since the vehicle employs electric 
actuators for its stock systems.  The vehicle is inherently throttle-by-wire, as the division 
of electric motor vs. ICE power is dynamically controlled.  Under normal operating 
conditions the vehicle is essentially brake-by-wire as well: the hydraulic master cylinder 
is isolated from the actual hydraulic brake system and driver requested braking torque, 
which is sensed using a brake pedal position sensor and a pressure sensor in the master 
cylinder-stroke simulator hydraulic circuit, is measured and then generated automatically 
through ECU control of regenerative braking and the electrically-operated hydraulic 
brake system. The transmission is controlled electronically, with the exception of the 
parking gear.  Controlling the throttle, brake, and transmission is accomplished by 
emulating the existing vehicle driver intention sensors with custom electronic interfaces.   

Figure 1. Structure of the OSU-
ACT.  
The five distinct portions of 
“intelligence” are labeled: 

• Plan Generation 
• High Level Control 
• Low Level Control 
• Sensor Fusion 
• Situation Analysis 
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The vehicle has electric power steering: implemented with a 42-volt brushless DC motor 
integrated into the steering rack. Originally we intended to control the stock EPS motor 
by connecting it to a brushless DC motor amplifier, mounting a rack position sensor, and 
implementing position control.  However, disabling the vehicle’s electric power steering 
ECU generated error conditions that affected other vehicle systems.  Therefore, an 
Animatics SM2337D brushless servomotor with an integrated amplifier and position 
control system along with a Carson 23EP055 planetary gearhead was mounted on a 
hinged bracket that allows it to be locked against a gear mounted on the steering column 
for autonomous steering. 
 
2.2. Position Sensing 
The current position, orientation, and velocity of the vehicle is estimated using a software 
module filtering data from a number of sensors.  Two Novatel Propak-LB-L1L2 GPS 
receivers using Omnistar HP differential correction technology provide direct position 
measurements.  A Crossbow VG700A three-axis fiber optic vertical gyroscope provides 
angular rate and linear acceleration measurements.  These can be augmented with 
measurements from the vehicle’s own stability system gyroscopes and accelerometers 
which are obtained from the vehicle CAN bus.  Independent wheel speed measurements 
for each wheel, along with overall vehicle velocity, transmission, and steering wheel 
angle are also obtained from the vehicle CAN bus.  If available, a magnetic compass can 
also be integrated into the sensing system. 
 
2.3. Environment Sensing 

    
The vehicle has been equipped with a sensor system that completely covers the area 
around the vehicle, as shown in Figure 2.  A forward looking scanning laser rangefinder, 

Figure 2. Sketch of sensor 
coverage.  
Another forward-looking 
camera may yet be added. 
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the Ibeo Alasca XT, provides 4 vertical scanning planes, a range of up to 160 meters, an 
azimuth resolutions under 0.25 degrees, and a horizontal field of view (as mounted in 
front of the grill) of 220 degrees.   Two Sick LMS 221-30206 scanning laser rangefinders 
are mounted behind the rear bumper and angled at 20 degrees from the lateral axis of the 
vehicle to provide rear and side sensing with a range up to approximately 60 meters and 
azimuth resolutions of 0.5 degrees.  Two side mounted MaCom Short Range Sensor radar 
systems, with a range of approximately 20 meters and a horizontal field of view up to 70 
degrees, provide side sensing of vehicles in adjacent lanes and help to fill the gaps in 
coverage of the lidar sensors close to the vehicle. In addition, a Mobileye AWS image 
processing sensor system is installed to both detect forward vehicles and to provide lane 
marker extraction.  OSU developed lane marker tracking may also be installed if needed, 
as well as image processing algorithms developed by our partners. 
 
2.4. The System Architecture 

       Figure 3. System Architecture (Version 1). 
 

The architecture of the vehicle systems and computers is shown in Figure 3.  The sensing 
computer is a dual processor Pentium system running the Linux operating system and 
equipped with Arcnet interfaces for the Alasca XT, high speed RS422 serial ports for the 
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Sick lidars, and a CAN bus interface for the Mobileye and MaCom radar systems.  The 
control computer is a dual core Pentium Duo running the QNX real-time operating 
system and equipped with serial ports, analog and digital I/O and a CAN bus interface. 
 
3.   Algorithmic Approach 
 
3.1. Scenario Generation and Route Planning  
We follow a scenario-based hierarchical hybrid system design approach in controlling 
ACT. This is a significantly extended version of the approach we used in the two 
DARPA Grand Challenges [1-2]. 
 
The finite-state machine (FSM) that will run the car is comprised of two levels. (The two-
level FSM is somewhat similar to the approach we used in NAHSC Demo’97 [3] in 
accomplishing a scenario.) The higher-level states are called the Meta-States. The Meta-
States are those that can be discerned from the map, as selected by the Route Plan. Thus, 
as one traces the path along the Route Plan, one can identify the Meta-States (lane, 
intersection, zone, zone-with parking lot, etc.)   
 
We define a scenario as a mapping of the mission definition, provided by the MDF, to an 
ordered set of tuples (road/lane segment ID, appropriate state (and sub-states), entrance 
and exit criteria). The mapping will depend on selection of an optimal Route. The ACT 
high-level controller (HCL) will execute this set of tuples until either the scenario is 
complete or an external event requires the scenario to be replanned. In other words, a 
scenario defines a specific route through the road network that will accomplish the 
mission and the expected situation and required vehicle behavior at each stage along the 
route.  Although it seems possible to have the full scenario at the outset, this is not 
necessary. Each mission will have multiple checkpoints and we plan a scenario only from 
one checkpoint to the next, with possibly a two-checkpoint horizon. 

 
 

RNDF File 
from 
DARPA 

Graph 
Structure 

Path from one 
checkpoint to 
next à Set of 
Meta-States 

MDF File 
from 
DARPA 

Generate Meta-
States 
depending on 
location w.r.t. 
path 

Repeat for each checkpoint pair 

Off-line 

Figure 4. Establishment and running of the scenario 
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3.2. Route Planning stages 
We shall use the term “route planning”, “path planning” or simply “planning” to indicate 
the sequence of streets, intersections and “zones” that we plan to traverse. Route planning 
is essentially what you would do with a street map. Route planning will provide us with a 
list of meta-states (and associated tasks) the car will encounter. 
 
We shall use the term “trajectory planning” to indicate the curve (or sequence of points) 
the vehicle will follow as it goes down a street, avoids an obstacle, changes lanes, turns a 
corner, moves into a parking spot, etc.  
 
There are four stages in Route Planning: 
 

1. Establishment of a data structure based on map before race. 
2. Route planning before Mission. 
3. Route planning during Mission. 
4. Route re-planning during Mission due to street blocking. 

 
(1) Establishment of data structure: Almost all path planning algorithms start with an 
oriented graph. Our route planning is initialized by transforming the known data into a 
usable graph model. In this stage the given Route Network Definition File (RNDF) is 
transformed into a Network Graph Structure (NGS). 
 

             
   (a)       (b) 

Figure 5. a) A section of sample RNDF map. b) Corresponding NGS. 
 
NGS specifies an oriented graph whose “nodes” are 

• Entry/Exit points 
• Entry/Exit of Intersections 
• Parking locations within zones 

We identify different types of “links” in the NGS: 
• Lane links 
• Intersection traversal links 
• Zone links 
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• Roundabout links 
Each link has associated with it data that identifies its meta-states.  
 
(2) Route planning before Mission and (3) Route planning during Mission: It is 
assumed that route planning need only be done from checkpoint to checkpoint. When the 
Mission Data File (MDF) is provided, the car need only establish the first path (from start 
to first checkpoint). As the checkpoint is reached, the next one is picked from the file and 
the optimal path between the two is generated at that time. Thus a full route from 
beginning of the Mission to the end is not needed. 
 
(4) Route replanning: After a “U-turn” on a lane, a new route has to be established to 
the current goal checkpoint and the blocked lane has to be removed from the NGS. Route 
replanning can also be undertaken after an e-stop “pause”. 
 
Establishment of a path specifies a sequence of meta-states that the car will traverse in 
going from one checkpoint to the next.  Thus the path selected creates a list of Meta-
Tasks. (As mentioned before, the Sub Tasks will be situation dependent.) 
 
3.3. Planning between defined node pairs: The A* algorithm  
For any given start node/checkpoint and goal checkpoint in this environment, the A* 
search algorithm is used to plan a route using the graph structure. The A* algorithm is a 
well-known path planning algorithm [18].  Estimated cost of a path through node n is 
calculated as f(n)=g(n)+h(n), where g(n) is the cost (distance/time) taken to reach the 
node n, and h(n) is the estimated cost of the cheapest path from node n to the goal node. 
The A* algorithm guarantees that the solution is always optimal [19] if h(n) is an 
admissible heuristic, that is h(n) never overestimates the cost to reach the goal. Our 
design for A* includes minimum distance/time path for a given initial and final points. In 
the case of distance minimization, straight line Euclidean distance is used for h(n). To 
maintain the optimal solution for the time minimal path case, h(n) is calculated as 
Euclidean distance divided by maximum allowed velocity on each roadway, estimated 
traverse times for intersections and zones, and estimated completion time for U-turns. 
(There are no traffic estimates.)  
 
Figure 6 shows a sample route from checkpoint 11 (WID.3.1.2) to checkpoint 5 
(WID.1.1.18) for our Site visit path.  
 
3.4. Output of the Route Planning Module and Performance tests 
The Situational Analysis” and “High Level Control” modules use the output of the Route 
planner module. The Route Planner provides the output as an array of link structures. 
These structures consist of all waypoints describing the link, minimum/maximum 
velocity values, right and left boundary classifications, and Meta-states. The route 
planner module currently finds the route in less than 1ms for sample RNDF. Considering 
four or five time larger graph and )( 2nO nature of the A*, for the final event, the planner 
can produce solution in a very short time. 
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.       
4. High Level Control 
 
4.1. High Level Control Tasks 
The HLC module runs a Finite State Machine by sequencing the Meta-States according 
to the Route Plan. Transition among the Meta-States is location dependent, except for U-
Turn, which is initiated by external sensing.  
 
Transitions among sub-states are triggered by the Situation Analysis Module. 
 
The output of HLC is provided to the Low Level Control (LLC), usually as a set of 
waypoints and speed, and also as special instructions.  
 
4.2. The Meta-States 
Each Meta-State has a number of sub-states and a FSM underneath it. The lower level 
states will depend on the situations encountered in real-time. We list below a partial, 
descriptive explanation of a few Meta-States (see Figure 7): 
 
One and two lane roads: We have previously demonstrated car following and passing a 
stopped or slower car [3].  For two lane roads, one must observe the next lane for traffic 
while merging into traffic or passing.  Lane change behavior is a separate state or a sub-
state of standard road following. The reference path that is passed to LLC is generated by 
fitting a Catmull-Rom spline to the following waypoints and sampling the spline at three-
meter intervals for a total of ten points. The reference speed passed down to the LLC is 
based on the speed limits obtained from the mission definition file altered by road 
curvature concerns, obstacle or road termination detection, and car following. This 
reference speed and the 30m-reference path that consists of ten regularly spaced points 
form the bulk of the HLC-LLC communication. In addition to this main functionality, 
additional commands that can be passed using the same interface include turn-signal 
utilization, specialized motions and emergency braking. 
 
T Junction and 4-way Intersection: Intersection behavior is a new and complex 
problem, with numerous permutations of potential behavior depending on which 
direction the vehicle approaches the junction and which roads have stop signs.   

Figure 6. A sample route 
from checkpoint 11 to check 
point 5 
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Figure 7: The Meta-States (Version 1) 

 

Figure 8. Sub-states of the “4-way 
intersection” Meta-State. (Version 1) 
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Each potential behavior will be enumerated as a different sub-state machine.  For a given 
scenario at a specific intersection and specific approach direction only one state will be 
valid.  
 
An example set of sub-states from the Intersection Meta-State is given in Figure 8. 
 
The zone: This is somewhat similar to the behavior for GC’05 [4]. It has been extended 
to directly handle moving obstacles.  Our sensing and sensor fusion systems have been 
extended to provide specific identification and tracking of moving objects. One 
possibility in this state is parking. We have developed both a trajectory establishment 
procedure and precision motion controllers to handle both pulling in and backing out of a 
parking space.  
 
5. Sensor Fusion 
 
5.1. Clustering and Tracking 
The sensor fusion algorithm implemented on OSU's 2005 DARPA Grand Challenge 
vehicle used a grid occupancy approach [4]. Due to the traffic situation where an 
environment is highly dynamic ACT has moved towards a clustering and tracking 
approach.   
 
The sensor fusion computer is responsible for clustering and tracking all objects which 
are seen by the sensors.  Vehicle detections which are returned by the Mobileye and 
Macom radars are matched to a lidar generated cluster by looking for a lidar cluster 
within some distance threshold.  If no suitable matching cluster is found, the Mobileye 
and Macom detections may update or initialize a track without a corresponding lidar 
cluster.  Figure 9 shows returns from all three lidars combined into a single vehicle 
centered display.  The solid blue rectangle in the middle of the display is the ego vehicle.  
The front of the vehicle is towards the top of the display. The red outline of the laser 
returns shows other vehicles in a parking lot, and a building to the rear of the vehicle. 
 

            
Figure 9. Lidar returns in a parking lot and at an intersection. 

The sensor fusion computer first uses information about the position and orientation of 
the lasers with respect to the vehicle to transform the returns into a vehicle centered 
coordinate system.  Once the returns from the lidars are in vehicle centered coordinates, 
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the position and orientation of the vehicle with respect to the world are used to transform 
the lidar returns into a rectangular coordinate system that is fixed with respect to the 
world. 
 
After the lidar returns have been transformed into world coordinates, they are clustered 
into groups of points.  The clustering algorithm simply places the laser returns into a 
disjoint set data structure using a union-find algorithm [5].  Ultimately, clusters of laser 
returns are found whose members are not further than some maximum distance from each 
other.  Although the maximum cluster distance is still subject to some experimentation, it 
tends to be around 1.5 meters. Once the lidar returns have been clustered, the resulting 
clusters must be tracked.  The tracker keeps a list of active state information for each 
existing track.  The tracks are then matched to the incoming list of clusters.  Clusters that 
cannot be matched to an existing track are then used to initialize new tracks. Clusters are 
matched to tracks by minimizing the distance between the centroids of the clusters and 
the predicted location of the tracks.  The track predictions are generated with a variable 
gain gh filter [6]. The data association minimization problem is solved as a linear 
assignment problem using [7]. The output of the sensor fusion algorithm is a list of tracks.  
Each of the resulting tracks has a position and velocity.  Also, the general size and shape 
of the point cluster supporting the track is abstracted as a list of linear features. 
 
5.2. Sensor Fusion Results and Performance 
The clustering and tracking software has been tested on busy city streets in Columbus, 
Ohio surrounding OSU's Center for Automotive Research.  Figure 9b shows two screen 
shots of sensor monitoring application showing the sensor output while starting and 
driving manually in heavy traffic.  One of the tracks is showing the track id as well as the 
position and velocity of a vehicle crossing the intersection immediately in front of the ego 
vehicle that is represented by a solid blue rectangle. 
 
Generally, the clustering and tracking algorithm shows reasonable performance. However, 
the use of the cluster centroids to represent a cluster’s position presents problems.  There 
are several instances where the centroid of a cluster may move independently of the 
object responsible for the cluster [8] when an object is partially occluded and moving into 
occlusion, when an object casts a “shadow” over another more distant cluster, when an 
object is large enough to extend past the range of the laser (hedge or barrier on the side of 
a road) and when an object’s aspect changes with respect to the lidar. In the future it may 
become necessary for the OSU clustering and tracking algorithm to attempt to find corner 
points within clusters and use these points to estimate the position and velocity of a 
cluster’s track. 
 
6. Situation Analysis 

6.1. Introduction 
For an urban scenario, we are interested in all the clusters in our path, or on a road 
intersecting our lane. While an autonomous car is navigating through the city, many 
different situations may arise. The situations may vary if the car is on a one-lane road, a 
two-lane road, an intersection, and so on. Particularly critical for an autonomous car are 



OSU – ACT          2007 DARPA Urban Challenge 

13 

those situations related to intersections. When a car is approaching an intersection, it 
must give precedence to other vehicles already stopped. If the vehicles are stationary for 
a long time, the car must decide whether those vehicles are showing indecisive behaviour. 
Other situations may involve road blockage (the vehicle might carefully perform a U-
turn), parking in parking lots, and dealing with dangerous behaviour from other vehicles. 
All the situations must be evaluated, and sent to the High Level Controller (HLC )in 
order to drive the car. 
 
The term situation is defined to be knowledge concerning the vehicle and/or the 
prevailing scenario and surroundings. We call atomic situation all those situations that 
cannot be subdivided into other situations. From a practical viewpoint, situations are the 
switching conditions among meta-states and all the sub-states inside the state-machines. 
Thus, the aim of the Situation Analyzer Module is to provide the High Level Controller 
with all the switching conditions. 

6.2. Input and Outputs 
Inputs and outputs for the Situation Analyzer system are illustrated in Figure 1. The 
Sensor Fusion and Tracking Module provides information about the set of tracked objects. 
The information about position and velocity of the centroid, combined with the location 
of the lines defining the boundary, are given in a local navigation reference frame. The 
Path Planning Module provides the information related to the optimal path. The path is a 
sequence of links defining a traversable road. Starting from the path, the Situation 
Analyzer can identify the location of the road. The road model is structured as a set of 
polygons generated from a spline curve fitting the waypoints in the optimal path. Such a 
road model design is particularly suitable for both accuracy and implementation purposes. 
In order to let the computational cost be as low as possible, only the situations related to 
the current meta-state or sub-states are checked. 
 
The current sub-state is provided by the HLC. Obviously, there are a number of situations 
that may arise at the same time. Another input comes from GPS-INS system. The 
location of the vehicle is fundamental, because both the clusters and the road are 
provided in a geographical reference frame. 
 
The whole Situation Analyzer output is a vector whose elements are boolean values. Each 
element contains value 1 if the corresponding situation occurs, 0 otherwise. All the 
situations are reconstructed from atomic situations simply using logic operations. An 
example can be shown from Figure 10. If we take into account the state “Check passing 
lane”, we can realize that there are only three situations to be checked. E6 switching 
condition “Passing lane full temporarily” is an atomic situation, while E7 is just a 
situation made from the two atomic situations “Passing lane full permanently” and “Not 
enough space before intersection”, linked with an OR logic gate. 
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Figure 10. Two-Lane Road meta-state 

6.3. Road model generation 
One of the most important issues in the Situation Analyzer is road model generation. A 
good road model, very close to the real one, is fundamental to safely driving in an urban 
area, avoiding entering passing lanes with opposite driving direction, and remaining at a 
safe distance from the boundary of the lane. The road is generating starting from the 
optimal path. All the links inside the optimal path are drivable, and the width of the lane 
in correspondence of a certain waypoint is provided. From the links in the optimal path, 
the list of the consecutive optimal waypoints is extracted. For an accurate road generation 
we need close points, while the waypoints may be very far from each other. For that 
reason, a Catmull Rom [9, 10, 11] spline function passing through the waypoints is 
generated. Catmull Rom splines are unique from other mathematically computed arcs in 
that they pass through all of their control points. Moreover the spline is C1 continuous, 
meaning that there are no discontinuities in the tangent direction and magnitude. 
However, the spline is not C2 continuous. The second derivative is linearly interpolated 
within each segment, causing the curvature to vary linearly over the length of the 
segment. The spline function is then sampled and all the samples are chosen to be equally 
spaced. In order to have a very accurate road model, we choose to keep a distance of 2 
meters between every pair of consecutive samples. Subsequently, all the samples are 
linked with segments, as shown in Figure 11 with the red straight lines. In this way, the 
set of segments is an approximation of the spline curve. 
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Figure 11.  Example of Catmull Rom spline function 

 
We considered a number of different road model designs. One possible approach is to 
consider a road map with fixed memory occupancy. The map can be divided into cells. 
Depending on the desired accuracy, the number of the cells may be very large. Since the 
number of the cells is fixed, the map should be very frequently updated during the 
mission. Moreover, in that design there might be many empty cells in memory, carrying 
no information about roads.  
 
Instead we designed an accurate and computationally simple method to represent a road 
by a set of polygons. From each pair of consecutive samples, a rectangle is constructed. 
One side of the rectangle has the same length as the distance from the two samples. The 
length of the other side is the lane width. All the rectangles are then fused together, as 
shown in Figure 12. The intersection point between two consecutive rectangles, and its 
opposite point are then computed, and the resulting polygon is a trapezoid. For every 
trapezoid, the vertices are ordered. All the trapezoids, taken in sequence, will generate the 
current road. Generating a road as a set of polygons also allows extension of the current 
implementation with information coming from different sources. 
 
This compares favourably with many algorithms proposed in the literature to extract the 
edges of lanes [12,13,14] with a prescribed accuracy.  
 

      

6.4. Primitives 
Some primitives have been defined to easily handle the situations. To deal with many 
situations, we must be able to figure out if an obstacle is inside a lane. To handle this case, 
algorithms for finding points inside polygons have been carefully taken into account. 
Many of these algorithms can be found in the computer graphics literature [15, 16, 17]. 
Most of them are very simple to implement, and have a low computational order, 
typically O(nlogn) or O(n2), with n the number of the vertices in the polygon. 

Figure 12. The road model 
generation process. The red dots 
are the final road vertices 
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As we define the obstacle with a set of lines, we want to check if at least one line is inside 
a polygon. We face this problem by sampling all the lines of the cluster, obtaining 
equally spaced samples, and by applying the “find point in polygon” algorithm to all the 
samples in the cluster. 

6.5. Design of the situations 
In this technical report we give details about the design of the situations involved in the 
Site Visit. However, all the situations are designed and easily extended to more complex 
scenarios. In particular, many atomic situations are designed to be augmented with 
information coming from a sensor system. This is especially useful when the vehicle 
cannot completely rely on the waypoints. 
 
6.6. Intersection meta-state 
In real cases, when approaching an intersection, a human driver must take care of a 
number of possible situations. A T-junction can be thought to be a particular case of a 4-
way intersection, where an exit is completely blocked. All the situations that can be 
encountered are described in the 4-Way Intersection meta-state. Three common situations 
are here shown as an example: Is it my right of way? Is the intersection free? Are there 
cars showing indecisive behavior? 
 
When the vehicle arrives at the intersection, it checks the other stop areas. The vehicle 
will wait until all the previous clusters have moved. To check out whether the 
intersection is free, a polygon with the same shape as the intersection is used. Using the 
primitives, it is simple to realize whether an object is occupying that area. In real urban 
scenarios, the exact dimension of the whole intersection might not be known from stored 
information. In order to improve the knowledge about the exact geometry of the 
intersection area with visual information, our current approach is as follows: Let us 
suppose that we arrive at the intersection with the correct heading angle. From the 
knowledge concerning the width of the crossing lanes, it is simple to create a box to be 
superimposed onto the intersection area. With visual information, the vertices of the 
polygonal intersection area could be stretched, providing a more precise geometry. A 
particular situation can happen when one or more cars are showing an indecisive 
behavior, that is, when they remain stopped inside the intersection for a long time, or they 
are moving too slowly inside the intersection. This situation may be understood by 
keeping track of the unique ID of the cluster inside the intersection, and associating a 
timer with each of them. After a fixed time has expired, the cluster is classified as 
indecisive. 
 
6.7. Double lane meta-state 
Situations inside Two-Lane Road meta-state are easily handled starting from the simple 
structure of the road. When we enter a two-lane road, the opposite lane is automatically 
created. The opposite lane is constructed from the samples in the original lane. In this 
way, we obtain an opposite lane whose right boundary perfectly matches the left 
boundary of the original lane. We investigated other choices for making the opposite lane. 
One could take the waypoints in the opposite lane from RNDF file as provided by 
DARPA. But we are not guaranteed they will be coupled with the waypoints in the 
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original lane. If that is the case, fitting the waypoints in the opposite lane with a spline 
function might conduct to a right boundary for the opposite lane that does not perfectly 
matches the left boundary of the original lane; in other words there might be “holes” 
between the two lanes. 
 
Typically, the situations inside the Two-Lane meta-state involve distance and velocity of 
objects. Situation like slow traffic, stop-and go behavior, lane blockage, are easily treated 
by evaluating the position and velocity of the cluster inside the specific lane. 
 
6.8. U-turn meta-state 
Before performing a U-turn in a real urban scenario, the driver must pay attention to 
incoming vehicles from the opposite lane. A typical U-turn scenario is shown in Figure 
11. While the car drives in lane A, all the information about the opposite lane is known. 
When the car is approaching the last point in the lane A, the Situation Analyzer checks 
lane B and informs the HLC about incoming vehicles. 
 

 
Figure 13. U-Turn meta-state 

 
7. Low Level Control:  
 
7.1. Command Interface  
The low-level control receives operational instructions from the high-level control 
module.  These instructions take the form of 
 

1. A path to be followed, defined by 10 approximately evenly spaced control points 
2. A desired speed  
3. Commands to indicate starting and several forms of stopping 
4. A command to indicate a precision stop at a given stopping line  
5. Commands to enable specialized ("robotic") motions, for example moving a 

specified distance along a constant radius arc  
 
The low level control will execute a given command set until either the command is 
completed and the vehicle is in a stationary state, or until the vehicle has driven off the 
end of the path provided, at which point the vehicle will be stopped, or until it receives a 
new command set. 
 
7.2. Longitudinal Control: 
The interface and control of vehicle throttle and brake was previously described.  A PID 
controlled is used to generate a virtual torque command to achieve the commanded speed, 
and a state machine is used to select between the use of throttle, active braking, or engine 
idle braking.  Speed commands are modified to constrain the acceleration and jerk of the 
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vehicle to a preset comfortable limit.  There are also "emergency" deceleration modes 
that are less comfortable.  
 
To execute a precise stop, the low level control determines the distance from the vehicle's 
current position to a line drawn through the specified stopping point and perpendicular to 
the vehicle's path of travel, taking into consideration the distance from the front bumper 
of the vehicle to its centroid.  The speed of the vehicle is controlled to follow a specified 
deceleration trajectory which results in a speed of 1.0 m/s when the front bumper of the 
vehicle reaches a distance of 3.0 meters from the stopping line, at which point the vehicle 
travels at that constant speed of 0.6 m/s until it is brought to a stop over the stopping line. 
 
7.3. Lateral Control: 
The path that the vehicle is to follow is specified as a set of 10 control points.  The lateral 
controller identifies both the current location of the vehicle, denoted Ps in Figure 14, and 
the look ahead point 7.0 meters ahead of the vehicle along its lateral axis, denoted Po, 
and extracts a subset of path control points closest to each location.  Constant radius 
circles are fitted to the points in each subset, as shown in Figure 14.  These circles are 
used to compute the vehicle offset distance from the path at Ps and Po, denoted as O and 
S respectively in Figure 14, and can also be used to estimate a desired yaw rate.  The 
subset of points also defines a desired yaw angle, from which a yaw angle error 
measurement can be computed.  Situations in which the points define a circle of very 
large radius are treated as lines in special cases.  The offset O and S drive squared-
integral-derivative control laws, and the yaw errors drive proportional-integral-derivative 
control laws, the outputs of which are weighted and combined to generate the overall 
steering command. 
 
Steering angle commands are limited by a speed-dependent maximum value to mitigate 
the chance of rollover.    
 
7.4. Testing 
The control results, as tested on the Video Submission Course, are shown in Figures 15 a-
c.  The path traveled is shown in Figure 15a. Note that after the first corner turn, the 
vehicle stops briefly, transitions into the left lane to pass a stopped vehicle, and then 
transitions back to the normal lane of travel.  The vehicle also stops for the stop sign at 
the 3rd corner turn. 
 
Lateral control, shown in Figure 15b, shows that offset errors are within 0.55 meters of 
the commanded trajectory, except when the trajectory is discontinuously changed to 
generate the lane change maneuver.  Longitudinal control, shown in Figure 15c, 
demonstrates that velocity errors are within 0.35 meters per second, with the significant 
errors occurring when the vehicle is traveling on a downhill slope, except during 
deceleration to a stop when a comfortable deceleration rate is imposed for the first two 
stops, and an emergency" deceleration is demonstrated for the final stop.  Further 
improvements in longitudinal control are ongoing. 
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Figure 15: Test 
results for the video 
submission. (a) Full 
route, (b) Lateral 
control, (c) 
Longitudinal 
control. 

Figure 14. Trajectory 
following control 
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8. Conclusion 
In this report we have summarized the approach in developing OSU-ACT, and the design 
decisions and tests performed through the process.  The description has stressed the new 
elements of our design, especially in light of the Urban Challenge requirements. Issues 
particularly relevant to the Site Visit have also been stressed.  

Two sets of activities and developments were not mentioned in detail due to page 
restrictions:  

(1) Aspects of autonomous vehicle control we have had experience with and we 
already documented in the literature. Lane change is given in [20], car following 
is given in [21] and basic DGPS/INS use in [22]. 

(2) Ongoing development is in 

• Estimation of multiple moving obstacles trajectories and collision 
estimation 

• Algorithmic speedup of some sensing and registration on a blade 
architecture computer 

• Vision based additional capabilities 

• Trajectory planning. (See [2] for our Grand Challenge version.) 

• Fault/failure handling 

Our simulation studies indicate that problems provided by the Urban Challenge are being 
solved by the OSU-ACT. 

 

APPENDIX A: Simulation and Visualization Tools 
A number of simulation and visualization tools have been developed as summarized 
below. 

Data Visualization Tools 
Extensive data visualization tools were developed for the Grand Challenges, where we 
appreciated their contribution to the design process. Figure 9 is an example of one used 
for lidar data analysis. 

The Gazebo Based Simulator 
The computer simulator used for OSU-ACT scenario and architecture testing is based on 
Gazebo, which is part of the popular open-source software package, the Player Project1. 
The primary function of the Gazebo simulator is to provide vehicle, robot or object 
models in a customizable, user-defined environment. These vehicle models are 
controllable through the well-documented Player interface just like a real mobile robot. 
The simulations required in OSU-ACT design and testing cycles can be broken into two 
major components. The first one is a realistic representation of the vehicle model. Both 
the physical properties of the OSU-ACT, such as the general size, shape and weight, as 
                                                
1 http://playerstage.sourceforge.net/ 
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well as the dynamic characteristics such as acceleration, braking and steering behavior 
are included in the vehicle model used in the simulations. A number of sensors such as 
laser range finders and GPS receivers are also included in the model in order to simulate 
sensor fusion and decision-making processes of OSU-ACT. 
 The second component of the simulation is the environment definition, or the 
world-file. The world-file contains environmental constants such as gravity and friction 
and also provides a means to define a simulation course such as a simple ring or an 
intersection. The terrain and the objects can be customized, one or more vehicles or 
mobile robots can be placed in the environment and observation point-of-view can be 
defined through world-file manipulation.  
For the traffic problems, more than one car can be simulated in Gazebo. With the multi- 
car simulation, intersection, road traffic, and other possible scenarios that are possible for 
the real Urban Challenge can be modeled in Gazebo. 

     
Figure-16: Intersection  and vehicle following simulation. 

 
The architecture of the Gazebo simulator is shown in Figure-17. (Note the match with 
Figure 1.)  A simulation interface is created that matches the interface to the real vehicle.  
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Player Vehicle Interface
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(Simulator)

Low Level
Control
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Control
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Figure-17. Gazebo 
Simulation Architecture 
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After all the control algorithms are successfully simulated in Gazebo environment, the 
same programs can be directly applied on the OSU-ACT. 
 
Network Simulator 
A Network Simulator, based on the VaTSim software that we developed some years ago 
[23], is being extended. This is to be used for testing state machine algorithms with 
different scenarios and traffic in complex urban environments. 

Robot Based Emulation 
Intersection and short routes are being emulated in the lab with wheeled robots. In fact an 
undergraduate Design Lab has run based on this lab setup. 

        
Figure 18. An intersection layout in the lab and the car-emulating robot. 

See: http://www.ece.osu.edu/osuact/ece683_2007.html 

 

Appendix B: Mapping Tools 
The mapping support for autonomous vehicle navigation includes two essential tasks: 1) 
to provide terrain, natural- and man-made object/feature information for global path 
planning, as well as for vehicle local navigation (staying on course in off-road situations), 
and 2) to sense/map the vehicle vicinity, and thus provide for local vehicle control, such 
as staying on the road (within a lane), avoiding obstacles, etc. Since, the second objective 
falls into one of the goals of robotics, mapping is usually only referred to the first task.  
 
Mapping or geospatial data can come in a variety of formats, including mass surface 
points such as DEMs; vector description of objects, such as road, building, contour lines, 
natural features; classification information, such as vegetation type, population density, 
traffic flow; imagery, such as airborne and satellite, unprocessed or rectified, 
monochrome or color; topology, such as describing the relationships between various 
data element; and so on. Map data are usually organized in a GIS database, which uses is 
a multilayer approach to store the different data entity, and provides tools to visualize, 
access and analyze the geospatial data. In the evolution of the DARPA Grand Challenges, 
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there has been a shift from the relatively basic data formats toward the more abstract 
geospatial data entities. In the first two DGC races, the main objective of the mapping 
support for every team was to provide reliable geospatial data in the waypoint-defined 
corridors for the path planning during and prior to the race. In theory, an accurate terrain 
model combined with thematic information and the description of all natural and man-
made objects would be sufficient for the mapping requirements. In contrast, the DARPA 
Urban Challenge requires practically no terrain data information, as the vehicles are 
confined to a road network, which is well defined by the race organizers. In the light of 
these new requirements, the mapping efforts should support the following tasks: 
§ Waypoint generation based on the RNDF data, 
§ Providing tools to manipulate RNDF files, including editing/creating/ 

visualization, 
§ Create a GIS database for field deployment that can provide all publicly available 

data for analysis, including orthoimage backdrop, slope analysis, etc. 
 
Until now most of the R&D efforts have been devoted to the first two tasks. The 
waypoint generation module that provides the driving information for the low-level 
vehicle control based on the RNDF file has been completed and tested. A toolbox to 
manipulate RNDF files has been developed, including standalone editing and 
visualization components. The visualization is currently accomplished by Google Earth 
technology, using the kml protocol; points with long/lat information can be directly 
visualized in Google Earth. 
 
The development of the GIS database is based on the earlier system design and 
implementation used in the first two DGCs [25]. The core component of the system is the 
ENVI Remote Sensing Exploitation Platform, an excellent environment for the 
visualization, analysis, and presentation of all types of digital imagery, including 
advanced yet easy-to-use tools, geometric correction, terrain analysis, raster and vector 
GIS capabilities, extensive support for images from a wide variety of sources. The 
previous RDDF interface has been updated to the new RNDF, the import is completed 
the export is in the works. The editing capabilities are still under investigations and will 
be developed as decisions are made. 
 

 
 
Figure 18. Waypoint and corridor visualization using USGS DOQQ imagery in ENVI. 
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